Direkt zum Hauptbereich

Posts

Es werden Posts vom Dezember, 2016 angezeigt.

#LinearRegression in Matrix Notation for #R

Handcrafted algorithms It is a very good exercise to write your algorithms from scratch to see what is really happening. In this post I used matrix notation in R to run linear regression. Simulated data First, we need some data. I wrote a simple function to simulate our X from Y. makeX <-   function(Y, n){   X <-   matrix ( 1 ,  ncol= 1 ,  nrow =   dim (Y)[ 1 ])   for (i in  1 :n){     X1 <-   Y +   rnorm ( 100 ,  sd =   0.25 ) +   sample ( seq (- 1 , 1 , 001 ),  100 ,  replace =  T)     X <-   cbind (X, X1)   }    return (X) } One dependent variable We start with a very simple model. Y <-   matrix ( rnorm ( 100 ),  ncol= 1 ) X <-   makeX (Y, 1 ) The cool thing is that we can find the parameters P (i.e. intercept and slope) with one single matrix equation: P = (X t X) -1 X ...